Doing Well by Making Well: The Impact of Corporate Wellness Programs on Employee Productivity

Timothy Gubler
School of Business Administration, University of California, Riverside
tgubler@ucr.edu

Ian Larkin
Anderson School of Management, UCLA
ian.larkin@anderson.ucla.edu

Lamar Pierce
Olin School of Business, Washington University in St. Louis
pierce@wustl.edu

July 18th, 2016

Abstract: This paper provides the first evidence linking a panel of individual medical data from a corporate wellness program with objective productivity improvements in industrial workers. Almost 90% of companies use corporate wellness programs designed to improve employee health. Existing research has focused on measuring cost savings from reduced insurance rates and absenteeism. In contrast, our paper explains and empirically tests how wellness programs can improve employee productivity, and thereby firm performance. We argue that productivity improvement can arise from two sources. First, wellness programs can increase job motivation through improved satisfaction for all workers and gratitude or reciprocity from those who discover a previouslyundiagnosed illness. Second, wellness programs increase employee capability by spurring them to take actions that improve health, well-being and ultimately productivity. We test these predictions using a wellness program implemented at multiple plants of an industrial laundry company. Using a three-year panel of individual productivity and medical data, we find program participation increased productivity by 5%, compared to non-participants, regardless of pre-existing health levels or post-program health changes, suggesting increased job satisfaction for participants. Moreover, many sick and healthy individuals improved their health, increasing productivity by 11%. Surveys indicate that many employees, regardless of pre-existing health levels, improved their diet and exercise from the program. Overall this study suggests that firms can increase operational productivity through socially responsible firm health policies that improve both workers’ wellness and economic value.

Keywords: Worker Productivity, Health, Wellness Program, Presenteeism, Corporate Social Responsibility
1. Introduction

Companies increasingly invest in employee health and well-being (Ton 2014). A recent survey by Medical Billing and Coding (2012) found that around 90% of companies now use corporate wellness programs that can include simple biometric screenings such as basic blood tests, advanced screening for diseases such as cancer, exercise programs, nutritional and diet programs, health history and habits surveys, and training on protecting and improving health. The prevalence of such programs is unsurprising given growing rates of obesity, diabetes and other health problems, and the implications of these health issues for employer-sponsored health insurance and absenteeism (Baicker, Cutler, and Song 2010; Boles, Pelletier, and Lynch 2004). Obesity has steadily increased to almost 35% of the United States population in 2012 (NCHS 2012), diabetes cases have more than quadrupled since 1980 (CDC 2014), and exercise rates and eating habits have not improved (Gallup-Healthways 2012). This decrease in employees’ physical health is reflected in the 131% increase in health insurance premiums from 1999-2009, the cost of which is largely borne by employers (Kaiser/HRET 2012).

Extensive research in the fields of medicine, public health, and health economics shows that the costs of corporate wellness programs are dwarfed by reductions in insurance costs and absenteeism. A recent meta-analysis found that each dollar spent on wellness programs saves $3.27 in health care costs and $2.73 in absenteeism costs (Baicker et al. 2010). Although these gains are substantial, they ignore an important class of operational benefits from investing in employee health and well-being—worker productivity. As management and operations scholars argue (Danna and Griffin 1999; Goldstein 2003; Grant et al. 2007; Neumann and Dul 2010; Ødegaard and Roos 2014), healthier employees are not simply less expensive and less absent, but are also more productive. A large occupational health literature on “presenteeism” – working while ill – suggests lost worker productivity costs companies over $150 billion, almost three times absenteeism costs (Stewart et al. 2003). Despite this importance, the existing literature has failed to causally link objective health data from wellness programs with real individual productivity changes in workers. This may explain the confusion among firms regarding how much wellness programs actually help their bottom line. A recent article in the Wall Street Journal notes that “employers are stymied by the difficulties of measuring the financial and health impact of wellness programs” (Weber 2014).

In this paper, we provide the first causal evidence based on objective data that wellness programs and their related health improvements can improve individual productivity. Detailed daily production data, combined with annual medical data including bloodwork, lifestyle choices, and vital statistics, allow us to exploit a quasi-experiment in five production plants that generates a causal estimate of the impact of the wellness program on productivity as well as evidence on how and why these productivity changes occurred. We argue that employee wellness programs can improve existing worker productivity through two sources. First, we argue that wellness programs can improve motivation by credibly demonstrating organizational concern for workers, thereby increasing employees’ organizational commitment, loyalty, job satisfaction, and
gratitude to the company. Second, we argue that wellness programs can increase employee capability by improving physical and mental health and overall psychological well-being (Thayer et al. 1994; Christian et al. 2015).

We argue that these two sources of productivity gains—motivation and capability—will depend on two employee-specific dimensions: 1) pre-existing health and 2) the motivation and ability to improve health. Our study estimates the overall impact of a wellness program on individual productivity for these four types of employees, as well as on the operational efficiency and production cost for the firm. We predict the greatest productivity improvements in employees with pre-existing health conditions who remediate these problems.

We test our theory using novel longitudinal data on individual health and productivity from an industrial laundry company (which we call LaundryCo). In Spring 2010, LaundryCo management decided to provide free yearly biometric screenings to all full-time employees in four of their five laundry plants. The fifth plant did not participate because it used a different health insurance plan than the other four plants. LaundryCo engaged an outside company to visit the four participating plants and administer a simple health exam that included drawing blood, taking blood pressure, and administering a health survey. The voluntary exam culminated about three weeks later with an educational seminar where a registered nurse presented each employee with a personalized health packet that detailed their current health status and provided recommendations for improving health.

Our approach empirically estimates the impact of the wellness program, including objectively-measured improvements in worker health, on productivity. We compare productivity changes for participants to the quasi-control group of the non-participating plant, as well as the 15% of employees at the participating plants who were absent the day of the screening or who otherwise chose not to participate. Nearly all employees had at least one abnormal blood test out of the 42 given, many due to small deviations from the normal range. We therefore hired three physicians to evaluate the sickness level of each participating employee based on the entire battery of test results. Our physicians indicated that a third of employees had a health problem at the time of screening.

The wellness program improved average worker productivity by nearly 5%—roughly equal to adding an additional day of productive work per month for the average employee. However, our results reveal that the impact of employee wellness programs on productivity may not primarily stem from improving the health of sick workers. In our setting, all participating workers were affected by the program. First, employees who had no health problems and whose health did not improve after the program exhibited a 7.5% productivity increase due to the program’s introduction. This is consistent with our theory that a wellness program will increase job satisfaction in all employees, since it is an indication that the employer values employees.

Our results also show that many employees improved their health after receiving health information. Our physician evaluators indicated that 25% of sick employees improved between the first and second years
Moreover, sick employees whose health improved increased productivity by over 10% compared to non-participants. Strikingly, some already healthy employees also improved their health; survey results indicate that these health improvements stemmed from increases in physical activity, attention to diet, and other lifestyle changes. The increased productivity of the sick and non-sick groups were statistically indistinguishable, suggesting that lifestyle changes are initially more important to employee productivity than actual improvements to health problems. This is unsurprising given that the most common health problems in our setting were chronic conditions such as high cholesterol, improvement in which can take many years.

Our paper contributes to several key literatures in operations, management, and strategy. First, we add to growing research in management on the relationship between employee well-being and organizational performance, providing the first causal evidence linking a multi-year panel of medical data to actual individual productivity improvements in a firm. This supports existing cross-sectional and self-reported data in prior work (e.g., Burton et al. 1999; Goetz et al. 2003; Ødengard and Roos 2014).

Second, our paper joins the growing literature in operations that uses detailed micro-level production and service data to study how environmental, social, and psychological factors can impact individual worker productivity. Recent studies have demonstrated operational policies such as scheduling and staffing (Chan et al. 2014; Dai et al. 2015; Huckman and Staats 2011), monitoring and transparency (Bernstein 2012; Buell et al. 2016; Pierce et al. 2014; Staats et al. 2016; Tan and Netessine 2015), performance recognition (Gubler et al. 2016; Song et al. 2016), and workflow (Kuntz et al. 2014; Staats and Gino 2012; Tan and Netessine 2014) can all profoundly impact worker performance. Even environmental factors outside managerial control, such as weather (Lee et al. 2014), are being revealed as determinants of individual and group productivity. Our study uniquely contributes to this literature not only by showing the link between health and productivity, but also by supporting the growing argument that firm policy can broadly improve operations through worker health and well-being (Ton 2014).

Third, our paper contributes to the large and often conflicting literature on corporate social responsibility (CSR) and firm performance (Margolis and Walsh 2003; Orlitzky et al. 2003; Kitzmueller and Shimshack 2012) by detailing mechanisms through which firms can “do well by doing good.” The empirical challenges in this research are widely recognized (Barnett and Salomon 2006; Chatterji et al. 2009), prompting calls to investigate the microfoundations of CSR (Aguilera et al. 2007). Our study responds to this call, showing how one frequently-used CSR policy can improve worker productivity and firm outcomes.

Finally, our paper contributes to a vast, but largely correlational, medical and public health literature by linking objective health improvement data with objective worker productivity gains in a quasi-experimental setting. This distinction is important for two reasons. First, people are often dishonest or biased about their own productivity (or that of others) (Podsakoff et al. 2003). Second, self-reported productivity is difficult to quantify or value, particularly when measured with scales.
2. Existing Research and Hypotheses

2.1 Socially Responsible Employee Policies

A significant literature studies socially-responsible firm policies at organizational and institutional levels of analysis, focusing on predictors of CSR, the outcomes of CSR, and mediators and moderators of the CSR-outcomes relationship (Wang and Qian 2011; Aquinis and Glavis 2012). These studies find that CSR is correlated with many positive outcomes, including improved reputation, consumer loyalty, stronger stakeholder relations, and attractiveness to investors. Despite this vast literature, however, scholars continue to disagree about the existence and magnitude of such effects because few papers provide causal tests of CSR and firm performance (Flammer 2015).

One growing body of research has focused on how socially-responsible firm policies increase firm performance by helping employees. This work shows that such policies correlate with many employee behaviors and attitudes (Aquinis and Glavas 2012), including organizational identification (Carmeli et al. 2007), employee engagement and citizenship (Glavas and Piderit 2009; Jones 2010), employee relations (Agle et al. 1999; Glavas and Piderit 2009), and attractiveness to potential employees (Turban and Greening 1997). With few recent exceptions (Burbano 2016; Carnahan et al. 2016; Flammer and Luo 2016; Cuypers et al. 2016), however, field studies rely on correlations without providing strong causal evidence.

This paper focuses on employee wellness programs—one of the most common socially-responsible policies targeted toward employees. One reason these programs are so broadly used is the immediate, salient, and measurable benefit from reduced insurance premiums. Reduced premiums provide managers with immediate financial justification for introducing wellness programs (Berry et al. 2010), thereby removing many of the internal political barriers to such expenses. Additionally, firms may see immediate tangible gains from healthier employees through reduced absenteeism, injury, and worker compensation claims (Chapman 2012). Widespread evidence shows that decreasing a health risk such as smoking can significantly reduce insurance and absenteeism costs (Burton et al. 1999; Goetzel et al. 2003).

The existing literature therefore has primarily focused on how firms benefit from wellness programs via reduced costs from insurance, absenteeism, and risk, rather than from worker productivity. From an empirical perspective, this focus is understandable. The link between wellness programs and productivity is difficult to causally measure. Matched objective productivity and health data are difficult to obtain from firms, and isolating the treatment effect of such programs amidst other policy changes can be daunting. Furthermore, most companies offer wellness programs to all employees, which means that researchers cannot untangle temporal productivity changes caused by, for example, time trends in productivity or random shocks affecting all employees. These factors may explain why repeated meta-analyses of financial returns from employee wellness programs include almost no productivity-based returns (Chapman 2012).

We present a framework that details possible mechanisms through which such productivity increases might occur. This framework predicts individual productivity gains based on two sources: motivation and
capability. The importance of these sources in improving productivity is determined by two employee health dimensions—pre-existing health problems and health improvement during the program. Although we are unable to empirically measure these mechanisms, they provide likely reasons for the productivity changes that we are able to objectively measure.

Figure 1 summarizes these predictions. Our two dimensions classify employees into four categories, all of which are predicted to increase productivity after program implementation. We hypothesize that all participating workers will increase productivity because of job satisfaction, while those who learn of health problems will improve further due to feelings of gratitude. Next, we argue that both previously healthy and previously unhealthy workers can increase productivity through lifestyle changes that increase productivity. Finally, previously unhealthy employees who improve health will also improve productivity due to increased physical capability. We therefore predict that this group will see the largest productivity jump.

2.2 Productivity Through Job Satisfaction
Offering a wellness program demonstrates a firm’s concern for the well-being of its employees. Well-being spans numerous psychological, physical, and social dimensions (Grant et al. 2007). The costly implementation of a program designed to improve well-being on one of these dimensions can credibly signal to employees the firm’s broader concern for the quality of their work life, and even the quality of their life outside the workplace. Wellness programs can thereby improve the attitudes of workers toward their employer.

Employers frequently offer corporate wellness programs to all employees without knowing who will benefit, even after implementation. Therefore, all participants, not just those who receive new information from the program, will perceive increased organizational support, and therefore will experience increased job satisfaction. Indeed, the existence of a wellness program, independent of its efficacy, has been shown to increase job satisfaction (Zoller 2004) and raise perceptions of organizational commitment towards employees (Parks and Steelman 2008). Both job satisfaction and perceived organizational support are known to be positively associated with job performance (Armeli et al. 1998; Yee et al. 2008), which includes productivity on the job. We therefore hypothesize that:

Hypothesis 1: A company-sponsored wellness program will increase average employee productivity regardless of whether the program identified a health concern for the employee or led to improved health.

2.3 Productivity Through Reciprocity
One of the major aims of a wellness program is to help employees who do not know of an existing illness identify that they are ill. All such employees, regardless of whether the program also helps them remediate their illness, could see their productivity affected by the wellness program. This is because sick employees are likely to feel gratitude to the employer for providing information about existing but unknown health conditions. This information is inherently valuable, and employees who receive this gift are likely to
reciprocate (Bartlett and DeSteno 2006; Tsang 2006). Reciprocity theory (Kahneman et al. 1986) holds that actors, such as employees, react to unexpected giving by responding in turn, even if a receiver does not want or will not use a valuable gift (Tesser et al. 1968; Grant and Gino 2010; Adams et al. 2012). When an employee receives a benefit from the employer, they may strive to relieve this imbalance through contributions to the organization (Blau 1964; Eisenberger et al. 2001). One natural way employees could reciprocate is via increased productivity. Since the value of the information provided by the wellness program is highest for workers with preexisting health problems, these workers are most likely to feel gratitude and thus reciprocate by working harder (Dabos and Rousseau 2004; Hekman et al. 2009). This leads to our next hypothesis:

Hypothesis 2: A company-sponsored wellness program will increase average employee productivity more for employees with existing health problems than for healthy employees, even when the sick employees fail to improve their health.

2.4 Productivity Through Improved Well-being

As with employees whose health does not improve, we predict that the effects of improved health will differ based on preexisting health. Even healthy employees without diagnosed problems can improve health, since participants may better understand the benefits of healthy lifestyle choices after observing data on their own health. Moreover, free counseling on nutrition, substance abuse, weight, exercise, and other health habits provided through the wellness program may lead all participants, including healthy individuals, to make positive lifestyle changes (Parks and Steelman 2008).

Even if participants learn nothing negative from health counseling, employees may respond with increased commitment to overall health and well-being. Recent research has shown that subtle nudges about lifestyle choices and health and longevity can increase commitment to healthy choices in diet, exercise, and sleep (Vallgård 2012). The specific actions that employees take in a wellness program – seeing a registered nurse, getting blood drawn, and receiving information on typical health problems – may provide one such nudge.

Thus, even for already healthy workers, a wellness program will help some employees to make positive lifestyle changes in areas such as diet, exercise, and sleep. Each of these has been linked to employee on-the-job productivity via mechanisms such as stamina, energy and mood (Thayer et al. 1994). We therefore hypothesize:

Hypothesis 3: A company-sponsored wellness program will increase average employee productivity more for employees whose health improves after the program than for those employees whose health is not affected by the program, even for those employees without identifiable health problems.

2.5 Productivity Through Improved Physical Capability

Finally, we predict the largest productivity gains for those employees who remediate a health problem identified by the wellness program. The productivity of these employees improves not only via all three of the
previously discussed mechanisms – job satisfaction, reciprocity and increased well-being – but also via physical improvements brought about by addressing the identified health issue.

There is consensus in the occupational health literature that poor health reduces capacity to work and has substantive effects on wages, hours worked, labor force participation, job choice, turnover, retirement, structure of employment, and occupational choice (Currie and Madrian 1999). The direct link between health improvement and on-the-job productivity at the individual level, however, bears scant evidence in the social and behavioral sciences. Instead, health has been indirectly linked to productivity through human capital development (Becker 2007), identified through educational attainment (Conti et al. 2010), or through national and other macro-level measures (Currie and Madrian 1999).

Perhaps the most closely related literature on individual health and productivity is research on presenteeism—workers who are present but impeded due to illness, depression, injury, or pain. Presenteeism is estimated to be three times as costly as absenteeism. The occupational health and medical literatures use self-reported survey data to link productivity loss to a variety of mental and physical health conditions, including diabetes, depression, anxiety, cancer, migraines, and arthritis (Stewart et al. 2003). For example, one study used surveys from Lockheed Martin to link productivity losses with health problems that include migraines (4.9% loss), allergies (4.1% loss), asthma (5.2% loss), influenza (4.7% loss), and depression (7.6% loss) (Hemp 2004). Even when health improvements are not specifically tied to an individual’s capability to carry out a critical job task, improvements may increase worker productivity on tasks due to improved mental health and reduced distraction from pain and discomfort. Recent evidence from Christian et al. (2015) suggests that pain reduction, and subsequent improvements in energy, can dramatically affect discretionary tasks such as productivity or prosocial behavior. This existing literature suggests a final hypothesis:

Hypothesis 4: A company-sponsored wellness program will increase average productivity more for employees who remediate existing health problems than for any other employee type.

We summarize our predictions in Figure 2. Those that do not participate in the wellness program, shown on the far left, serve as the baseline for productivity. Employees who participate in the program, but who are neither informed they are sick nor improve well-being, have productivity improvements only through increased job satisfaction. Three other groups of employees improve productivity incrementally over this group. Employees who are told they are sick but who do not improve their health incrementally increase their productivity via gratitude. Employees who are not sick but who make lifestyle changes incrementally increase their productivity via increased well-being. Our argument does not predict the relative productivity improvements of these two groups; it simply predicts productivity gains for both groups that are greater than those of healthy employees whose health does not improve. Finally, we predict that sick employees whose health improves will see the highest productivity gain as they benefit from not only job satisfaction, gratitude, and well-being, but also from greater physical capability.
3. Data and Methodology

A major innovation in this study is the link between objective employee health data and daily individual productivity measures over time. Previous wellness program studies have either lacked a control group or used purely cross-sectional or survey data. Our paper features both a quasi-control group and longitudinal objective data for both productivity and health paired with self-reported survey and demographic data for 111 workers in four treatment plants and one quasi-control plant.

3.1 Setting

Our data originate from a private industrial laundry service company, which we call LaundryCo. LaundryCo is one of the largest independent industrial launderers in the United States, and provides uniforms, mats, and other garments to clients that include auto shops, construction companies, restaurants, and hospitals. Uniforms, mats, and other garments are regularly laundered and repaired by LaundryCo, with an innovative IT and production system ensuring that garments are delivered on time. The cleaning and repairing of products is carried out primarily by workers in five plants across four states. These plants are nearly identical in layout, equipment, staffing positions, and products.

The soiled clothes, mats, and linens are dropped off at the plants and proceed through a complex sequence of sorting, cleaning, drying, pressing, and repair before being loaded and returned to the customer. Non-uniform items such as floor mats or linens go through their own unique process. Workers are cross-trained on multiple tasks, but typically specialize in only a few. Similar to other service operations, worker efficiency is critical to the profitability of LaundryCo. Mistakes and bottlenecks can create costly disruption in the production line and leave downstream workers with insufficient workload. Mistakes may include incorrect initial sorting, insufficient cleaning, or failure to repair garments before the final quality check. Bottlenecks can result both from mistakes as well as inefficiency in upstream workers. For instance, if the worker operating the dryer falls behind, the pressing machine operator might remain idle until garments arrive for pressing. The dependence of downstream workers on the productivity of their upstream colleagues means that low productivity due to presenteeism is particularly costly for LaundryCo.

In the spring of 2010, LaundryCo contracted with an outside company (“the vendor”) to provide a free wellness program to employees. Management’s goal was to reduce insurance premiums and improve employee health. However, the program was presented to employees as a free benefit and management actively encouraged employees to participate. The wellness program was offered to all employees on a voluntary basis, and about 15% of employees did not participate, some simply because they were absent on the day of the program. LaundryCo’s human resource director gave several other potential reasons for non-participation, including insurance coverage via a spouse, fear of doctors, or worry that the program would uncover drug use (although the program did not test employees for drug use). Participating employees received a 15% decrease in monthly insurance premiums (about $1.75 to $11 per month) as a small incentive
to participate.

We note that the carefully designed program of LaundryCo adheres to the two design principles discussed in the boundary conditions section above. First, participation was purely voluntary. While participants received a small reduction in insurance premiums, non-participants’ rates did not change. In fact, LaundryCo management did not keep record of non-participants, and plant managers report not knowing the identity of these workers. Second, LaundryCo had no access to the health data generated by the program. We received these data from the vendor, and LaundryCo is not party to any findings from the program. All employees were informed of these two facts – that participation was completely voluntary, and that their privacy was assured as LaundryCo would have nothing to do with administering the program.

The program began with a blood draw at the plants. The blood samples were then shipped to LabCorp and tested for 42 common health markers. Employees were then given a health survey from Wellsource, a provider of evidence-based health assessments to organizations. The survey asked about health background, nutrition, fitness, stress level and mood, drug use, and other behavior-related questions. Approximately three weeks after the screenings, nurses from the vendor returned to each plant, held an educational seminar, and presented each employee with a personalized health packet detailing their results. About 97% of participating employees in our sample had at least one abnormal test result each year, although some of these reflected small, likely random variations on a few blood test measures. LaundryCo’s human resource director indicated that because many employees rarely visit the doctor, numerous biometric screenings uncovered serious or unknown health problems. For the approximately 20% of employees who had severely abnormal test results in some area, the nurse would call them within a week of the first visit, explain the results, then ask for permission to forward them directly to the employee’s physician. Employees who lacked a primary care physician were offered a referral to one. The returned health packet detailed the individual’s health status, including blood results and abnormalities, health behavior scores, anticipated future health risks, and personalized suggestions for health improvement.

LaundryCo offered the full program, including biometric screenings, surveys and counseling, to all employees in 2010, 2011 and 2012. Although the program continues to operate for new hires, LaundryCo discontinued the full biometric screenings for previous participants starting in 2013.

3.2 Data

The data span 2009-2012 and cover all production workers employed at five LaundryCo plants for which productivity data are available. Figure 3 illustrates the structure of the data. Vendor visits 1 and 3 correspond to the initial visit where the first blood draws were taken. Vendor visits 2 and 4 correspond to when the results were returned a few weeks later. As shown in Figure 3, there are three possible employee wellness observations (one per year) for workers that remained employed and participated through 2012. However, because our theory primarily relates to the first time participating, when employees first have information revealed about their health, we limit our analyses to the first period of participation for each employee (i.e.,
either 2010-2011 or 2011-2012), and the testing from the subsequent year to examine whether the employee’s health improved.

Our dataset combines three main data sources. First, we received health data from the outside vendor. These data include both objective biometric blood tests as well as wellness survey results. Second, we employed outside physicians to assess each employee’s health level, and level of health improvement between years, based on the health and survey data. Finally, LaundryCo provided demographic, human resource, and daily productivity data from their IT system. We merged and de-identified these three datasets under the approved IRB protocol.

3.2.1 Biometric data. The vendor compiled longitudinal blood outcome data for each participant, including a panel of 42 blood tests. These biometric screenings assessed abnormalities in diabetes, cholesterol, kidneys, enzymes, iron, electrolytes, cell balance, thyroid, complete blood counts, white blood counts, and prostate (PSA). The average employee had nearly 5 abnormal blood test results, out of 42 total tests given. In addition, the outside vendor measured blood pressure for each employee and calculated their body mass index (BMI), a measure of obesity.

3.2.2 Survey results. The vendor also provided survey results from the Wellsource wellness questionnaire. Each participant completed the questionnaire at the time of testing, which included 110 questions that assess health history and habits, including personal and family health history, exercise and eating habits, drug use, sleep behaviors, current medications, mental health, job satisfaction, health learning interests, and safety behaviors (e.g. seatbelt and sunscreen use).

3.2.3 Physician evaluation of biometric and survey data. To thoroughly analyze the health data, we employed three internal medicine physicians from a major Midwestern university hospital to evaluate the pre-existing health and health improvements of each employee. The doctors evaluated health and improvement first as individuals and then as a group. We hired physicians because, while we have detailed health information on each employee, there was no overall assessment of whether or not an employee had an illness, or whether their overall health improved between blood testing events. Also, many of the abnormal blood test results were small deviations from normal levels.

We asked each physician to individually answer four questions for each patient by evaluating their complete biometric and survey records (see Appendix for questionnaire): (Q1) Do they likely have one or more medical conditions? (Q2) How seriously ill is the patient (5-point scale)? (Q3) How much would that problem impact their ability to carry out eight hours of manual labor (5-point scale)? (Q4) How much did the employee’s health improve between annual tests (5-point scale)?

Inter-rater agreement (IRA) on Q1 was good, with Fleiss’ Kappa of 0.50. This reflects unanimity on 90 percent of patients by a panel of experts. Inter-rater reliability (IRR) levels on Q2-Q4 were lower, with Krippendorff’s Alpha scores of 0.17, 0.12, and 0.20. These values would be low for non-expert raters on
simple tasks, but are consistent with studies of IRR in the medical literature. For example, a study including 32 medical interns and 12 full-time medical faculty on 128 different clinical evaluation exercise methods found IRRs ranging from 0.00 to 0.63, with a mean of only 0.23 (Kroboth et al. 1992). With results from so many blood tests as well as survey results, nearly every patient-year observation contains some contradictory data, and physicians tend to focus on different measures based on their own beliefs and experiences (Eddy and Clanton 1982). Furthermore, most studies of IRR in medicine involve a physical examination of the patient, which our physicians lacked. Therefore, our low IRR ratings are fully consistent with the literature on medical evaluations.

In fact, the physicians themselves expressed to us that Q2, Q3 and Q4 were difficult given the large amount of data and many borderline results, and after completing their individual ratings, they proposed collective evaluations involving a scoring system established by the doctors, with higher values reflecting worse health (see Appendix for scoring system). We use both the individual and collective measures for Q4, and the results are highly similar. We chose not to use Q2 and Q3 in the study due to the low IRR and our relatively small sample size.

3.2.4 LaundryCo IT data. LaundryCo provided data at the employee level on individual productivity and demographics for 2009-2012. Productivity data are at the worker/day level, and the other data are measured as of January, 2013. Demographic data include employee age, salary, tenure and plant assignment—all of which are absorbed in our fixed effect regressions. Worker productivity is based on how long an employee works each day and how efficient they are on each given task.

3.3 Treatment and Control Groups

Our treatment group is comprised of employees who work at one of the four plants that instituted a wellness program, and who chose to participate. We drop employees from the treatment group who cease employment with LaundryCo after participating in only one annual evaluation because our theory relies on identifying whether an employee’s health improves after their initial participation, which is only observable if the employee participates in at least one subsequent program.

The control group of non-participants is made up of two sets of employees. First, one plant did not participate in the program since it had a different health insurance program than the others. All employees in this plant are in the control group. The control group also includes workers from one of the four treatment plants who chose not to participate in the program. Results only using the employees in the non-participating plant are highly similar. To ensure the two groups were defined by the same criteria, we limit our control group to employees who were employed at the plant long enough to overlap with two annual screenings.

3.4 Dependent Variables

Our dependent variable is daily worker efficiency. LaundryCo uses a sophisticated IT system that carefully tracks each worker’s productivity (called “efficiency”) on each task every day. To do so, they measure the garment processing rate for each worker compared to the time-studied expected rate, as determined by
corporate headquarters. Scores are normalized such that 100 reflects performance that meets expectations. For example, the time-studied rate for pressing dress shirts is 50.4 seconds, meaning an employee must press over 71 shirts each hour to earn a score of 100. The system computes an overall daily efficiency rate for each worker, equal to the weighted average (by time spent) of the worker’s efficiency scores on each task that day. For example, a worker who spent two hours sorting soiled clothes with an efficiency score of 80, two hours loading soiled clothes and the appropriate soap into washing machines with a score of 140, and four hours unloading clean but wet clothes into bins to be taken to the dryer area with a score of 160 would have a final daily efficiency of 135. A typical employee will have an efficiency number around 110-120, with high performers consistently performing above 130 and low-performers at less than 100.

3.5 Independent Variables

Our independent variables represent three broad constructs: program participation, sick, and better. Program participation takes a value of 1 for dates after an individual first participated in and received information from the wellness program. Thus, empirically it is the interaction between a dummy for the post treatment period and a dummy indicating the first time participating. This variable takes the value of 0 for employees who either worked at the non-participating plant or else chose not to participate at any of the other plants in that year.

In our primary health specifications, Sick is a dummy variable created from question 1 in the physician health evaluation. Because IRA on this question is high, we require all three physicians to designate a worker as having a health condition based on the results of the wellness intervention that year. Results were highly similar using a cutoff of two of three physicians designating a worker as sick. In more detailed tests, we also examine illness in specific health dimension such as diabetes and kidney function. For these tests, we constructed dummy variables indicating sickness in each health dimension using blood test result cutoffs communicated by the outside health company to employees in their personalized health packet. For instance, an individual would be coded as “sick” on the LDL cholesterol dimension if they had a reading in excess of 99 mg/dL.

Similarly, in our primary specifications, Better is a dummy variable using question 4 from the physician evaluation that indicates significant health improvement between the first and second participation. We designate an individual as Better if the average doctor score indicates health improvement between periods. We alternatively measure Better using the group physician measure, as this assigns points to individuals each year based on health factors. Using this measure, we define Better as improvement in the score between the first and second participation. For the specifications that estimate improvement on specific health conditions, Better was defined by the specific biometric score changing from the abnormal to normal range. Finally, for the lifestyle change specifications (e.g., nutrition, exercise, and stress) Better was defined as improving between periods in the wellness survey (e.g. indicating on the survey that an employee’s attention to nutrition had gone up from the prior year). Tables 1 and 2 provide descriptive statistics and correlations for the final sample.
3.6 Specification

We test our theoretical predictions using a difference-in-differences (DiD) model that uses the non-participant plant and non-participants at participating plants as a quasi-control group. This results in 55 program participants and 56 non-participants. We treat the initial revelation of health information during the nurses’ follow-up visits as a shock to an employee’s knowledge about their physical wellness. Our approach then estimates the impact of the knowledge revelation and health improvements on employee productivity over time. Our data allow us to test our hypotheses by differentiating the separate impacts of program participation, revelation of sickness, and health improvement. The basic DID model is the following:

\[Y_{it} = \alpha_i + \beta_1 \text{Post}_i + \beta_2 \text{Participant}_i + \beta_3 \text{Post}_i \text{Participant}_i + \beta_4 \text{Post}_i \text{Participant}_i \text{Better}_i + \beta_5 \text{Post}_i \text{Participant}_i \text{Sick}_i + \beta_6 \text{Post}_i \text{Participant}_i \text{Sick}_i \text{Better}_i + \gamma_{jt} + \epsilon_{it} \]

where \(Y_{it} \) is efficiency for worker \(i \) in plant \(j \), at time \(t \), Post\(_i\) is a dummy indicating the first post-screening day for employee \(i \), \(\text{Participant}_i \) is a dummy indicating the individual participated in the wellness program, \(\text{Post}_i \text{Participant}_i \) is a dummy indicating the period after an individual received their health information, \(\text{Post}_i \text{Participant}_i \text{Better}_i \) indicates that individuals improved their health in the year following the receipt of health information, \(\text{Post}_i \text{Participant}_i \text{Sick}_i \) indicates that individuals learned they were sick, \(\text{Post}_i \text{Participant}_i \text{Sick}_i \text{Better}_i \) indicates that they learned they were sick but improved their health in the following year, \(\alpha_i \) are employee fixed effects, and \(\gamma_{jt} \) is a plant specific time trend. We note that the time-invariant baseline effects, such as \(\text{Participant}_i \), \(\text{Participant}_i \text{Sick}_i \) and \(\text{Participant}_i \text{Better}_i \) are all absorbed by employee fixed effects.

Each interaction in the regression specification reflects one of the hypotheses in our theory section and in Figure 1. Post\(_i\) \(\times \) Participant\(_i\) shows the baseline effect of the program on all participants, compared to non-participants. It is the only effect that applies to participants who are not sick and whose health does not improve (H1). Post\(_i\) \(\times \) Participant\(_i\) \(\times \) Better\(_i\) shows the incremental effect on participants whose health improves. The effect on non-sick patients whose health improves (H3) is given by the combination of Post\(_i\) \(\times \) Participant\(_i\) and Post\(_i\) \(\times \) Participant\(_i\) \(\times \) Better\(_i\). In contrast, Post\(_i\) \(\times \) Participant\(_i\) \(\times \) Sick\(_i\) shows the incremental effect on sick participants. For sick patients whose health does not improve (H2), the combination of the Post\(_i\) \(\times \) Participant\(_i\) and Post\(_i\) \(\times \) Participant\(_i\) \(\times \) Sick\(_i\) shows the effect of the program. The final interaction, Post\(_i\) \(\times \) Participant\(_i\) \(\times \) Sick\(_i\) \(\times \) Better\(_i\), shows the total effect of the program on these patients (H4).

It is important to note that all of these interactions are compared to the control group of workers who do not participate in the program. Of course, we do not observe whether these employees are sick or

1 We define post for the non-participating plant by the seminar date for corporate headquarters, which is in the same building complex.
improve their health; however, employees in the control group who learn they are sick and/or improve their health do so for reasons other than the corporate wellness program. Although we code each member of the control group as “not sick, not better,” these variables actually refer to realized sickness and health changes that occur due to the wellness program, and not for other reasons. Therefore, the control group’s unobserved changes in these categories, and their effects on productivity, serve as the counterfactual for what would have happened in the treatment group absent the wellness program.

Regression coefficients on the interaction variables only indicate the marginal effect of each category, and are difficult to interpret, so we report the linear combinations (total effects) of the coefficients which, as indicated above, correspond precisely to our hypotheses.

3.7 Estimation

The DiD design treats those in LaundryCo’s four plants that participated in the wellness program as the treatment group and the single non-participating plant and those who chose not to participate as a quasi-control group (hereafter called the control group). The DiD strategy “differences out” fixed differences between treatment and control groups, and uses post-treatment changes for the control group as a counterfactual for what would have happened had treatment group individuals not participated in the wellness plan. The DiD approach is the most widely used methodology to examine the impact of exogenous shocks or policy changes (Gertler et al. 2011).

Although DiD strategies do not require that treatment and control groups be the same, in our case individuals from the treatment and control groups are very similar on most dimensions. All five plants work on the same tasks, use the same production technology, and share common floor layouts. Also, two of the treatment group plants are geographically proximate (32 and 34 miles, respectively) to the control plant, which addresses local shocks such as weather that might affect productivity in the control plant. All five plants had similar managerial policies; most critically, there is no evidence that any policies changed at the same time the wellness program was introduced. Any fixed differences in management policies (or any other variable) do not affect DiD estimates.

DiD studies do not require random assignment of treatment and control, but a potential weakness of our study is the lack of a true control group, as individuals either select into the control group or belong to the single unionized control plant. However, it is extremely unlikely that participants chose at which plant they would seek employment based on whether they believed the plant was likely to offer a wellness program. Interviews suggest employees desire to work at the closest plant, and very few employees would find it desirable to transfer to a different plant from the one where they currently work. Therefore, with respect to participating in the wellness program, our intervention approaches random assignment. While some control group employees choose not to participate in the program, our results are highly similar without the inclusion of these employees.

We estimate our DiD model using ordinary least squares (OLS), clustering standard errors at the
individual level. To correct for potential time-variant differences in plants we also include monthly dummies for each plant, which function as plant-specific time trends.

4. Results

Table 1 presents descriptive statistics for our main variables of interest. It indicates that 33% of employees were classified as sick by all three physicians, and 14% improved their health after the intervention based on the collaborative physician scale. Examples of common health abnormalities were high cholesterol, obesity, hypertension, chronic pain, and self-admitted drug abuse.

We next test our hypotheses using overall health evaluations from our physician panel in Table 3. As noted, we present total effect coefficients that represent the four employee types presented in Figure 1, which we calculated using the marginal effects as explained above. The omitted comparison group is non-participants (for whom we have no health information).

Column 1 uses the dichotomous sick and better variables from questions 1 and 4 of the individual physician evaluation. Consistent with Hypothesis 1, healthy participants with no health improvements increase productivity relative to non-participants (B=9.060, p<.01). This effect represents approximately a 7.5% productivity growth compared to baseline levels of 120. Participants who discover health problems but do not improve (B=-1.707, p>.1), however, show no difference from the control group— inconsistent with Hypothesis 2. Their productivity change is in fact significantly less than their healthy counterparts (Wald test, p<.01). In contrast, participants with health problems who improve see productivity growth of 13.271 (p<.05), or approximately 11%. Non-sick employees who improve their health also see a large productivity increase (B=12.305, p<.05). H3 is therefore supported, since, regardless of pre-existing sickness level, productivity improves when health improves. However, the effect for improving employees is statistically identical for the healthy and sick groups (Wald test, p>.1), so Hypothesis 4 is not supported. We observe no incremental increase in productivity when sick employees improve their health.

Column 2 repeats this model, defining Better as a decrease in the collaborative physician health scoring measure. Employees whose scores decreased have a value of one, while those who stayed the same or increased have value of zero. These models produce similar results to column 1.

We thus find support for two hypotheses. Interestingly, our supported hypotheses involve effects on both healthy workers through increased job satisfaction (H1) as well as sick workers through increased overall wellbeing (H3). We find no support for hypotheses involving incremental effects on sick employees stemming from gratitude (H2) or improved physical capability (H4). The lack of support for H4 may simply reflect insufficient statistical power, because only 27% of participants improved their health, making it difficult to differentiate between sick and healthy employees whose health improved.

The lack of support for H2 is more surprising. We believe there are several potential factors that may limit the gratitude of sick employees whose health does not improve. First, the discovery of illness may
increase stress and depression, which have been widely linked to decreased productivity and safety (Kuntz et al. 2014). Second, as we noted in our theoretical framework, severe health problems may not be easily addressable in the short-term. Although no employees were diagnosed with a terminal illness, several had severe, uncontrolled diabetes, extremely high cholesterol, and morbid obesity, problems which likely would take more than a single year to rectify.

4.1 Specific Health Improvement Mechanisms

We further investigate health improvements for sick workers by looking at how improvements in specific disease areas impact productivity. Figure 4 plots coefficient estimates for each category of blood test. We limit reporting to only those employees who were classified as sick in that area, but improved. We emphasize that “Better” for these employees is defined by a move from abnormal to normal blood test ranges, and not by the physician scores. These results show that improvements in some disease areas, such as diabetes, electrolytes or cholesterol, led to large productivity impacts for sick individuals. Looking at the underlying data, it appears that there were many sick employees who had abnormal blood readings, such as LDL cholesterol in the low 100s or HbA1c readings in the 7s. Many such employees were able to move their blood test results to normal ranges within a year, and our results indicate that these employees improved their productivity significantly.

Finally, we look at potential mechanisms driving the improvements. For these tests, we primarily use survey data to identify workers who improve their self-reported behaviors on nutrition, exercise, and stress. We classify individuals as “Better” in each area if they improve their self-reported survey scores. We additionally use blood data on HDL cholesterol to measure exercise, as it is directly linked to exercise and cannot be gamed or misreported. We classify individuals as “Sick” if their score is below the minimum vendor-communicated threshold for that dimension. The results suggest that productivity gains are driven by lifestyle improvements in exercise, nutrition, and stress. Figure 5 shows that those with initial low scores on these dimensions, but who improve, see significant productivity gains. The results also demonstrate that wellness programs can spur already-healthy employees to make improvements in lifestyle, which directly lead to productivity increases.

Strikingly, the majority of productivity gains from lifestyle improvements actually accrue to employees who do not have identified illnesses from the wellness program. Table A3 of the Appendix repeats the analysis from Figure 5, with employees grouped by the “Sick” and “Better” variables defined by the three physicians. Although the number of employees in each category is small, the point estimates indicate that lifestyle improvements by employees who were not sick drive significant productivity gains. These gains are correlated with lifestyle improvements in stress, exercise and HDL. It is apparent from these results that many employees without health problems made positive lifestyle changes due to the program, and these changes drove significant productivity growth for LaundryCo.
5. Discussion and Conclusion

In this paper we presented predictions for how firms can increase productivity by introducing formal programs that help employees track health and wellness. We predicted heterogeneous effects on employee productivity depending on an employee’s pre-existing level of sickness and their post-program improvements in health. Notably, we explained that firms should not simply focus on enabling sick employees to identify and mitigate health concerns. Instead we argue that all types of employees can improve their productivity after the introduction of a wellness program.

While our study did not examine long-term persistence of these effects, we did examine persistence over the course of a full calendar year, so our effects are unlikely to be generated through a temporary Hawthorne effect. Still, we caution that some of the productivity gains we observe are the result of a continued commitment by the firm to support employee wellness. We doubt that long-term gains would be achieved through a single or short-term intervention.

Our empirical setting has several unique characteristics that make it a natural laboratory for studying employee health and productivity. First, our quasi-experimental setting and methods provide causal evidence that builds on previous work that was almost all correlational. Second, our health improvement data includes both detailed objective medical tests as well as self-reported data. In addition, we used physician health evaluations to determine true health improvements beyond the objective normal ranges for blood tests. Third, our paper is the first to use objective productivity data, and important advance over biased self-reported productivity measures.

5.1 Managerial Implications

Our empirical results demonstrate that the introduction of a corporate wellness program can have a large impact on employee productivity, and therefore firm profitability. In fact, our estimates suggest that the return on investment (ROI) in terms of productivity improvements may be even bigger than the ROI of these programs in terms of reduced absenteeism (273%) and insurance costs (327%). Our results suggest average productivity increased by 4.80% on average due to the introduction of the program – which is approximately equal to an extra employee workday per month (assuming 20 working days per month). Conservatively assuming an hour of productivity is worth $15 to LaundryCo, and that an employee works 220 days a year, a 4.8% productivity increase is worth $1,267. LaundryCo paid $120 per employee to the vendor for the program, and estimates that it spent another $120 per employee in terms of lost work time (to take the tests, have the follow-up visits, etc.). The program therefore cost $240 per worker, and the ROI of the program was 528%—70-100% greater than the ROI of these programs from reduced absenteeism or insurance costs.

This result, while only a rough estimate, suggests that the increases in productivity from corporate wellness programs are both potentially large and significantly undervalued by the existing literature and firms. The primary reason this ROI is so high is that already-healthy employees generate productivity gains from the program, in line with our theory. Our results demonstrate that already-healthy employees whose health does
not improve do work harder, consistent with having increased job satisfaction. That the wellness program positively impacts the productivity of the average employee, regardless of her health level or ability to improve her health, suggests that the scope for productivity improvement is large.

Our results suggested even larger productivity gains for those whose health improved due to the program. Notably, there is no difference in the productivity growth for employees who were and were not identified as “sick” by the program. Again, this suggests that the impact of the program is more widespread than one might initially think. Indeed, survey results indicate that the wellness program led to lifestyle changes for employees regardless of sickness levels.

The results also suggest some caution, as one group of employees – those whom the program identified as sick but whose health did not subsequently improve – did not exhibit the productivity gains seen by the other three groups. The job satisfaction about which we hypothesized either did not occur, or was cancelled out by the negative informational shock about and/or subsequent treatment for the indicated disease. Some employees may receive truly devastating news through a corporate wellness program, such as the existence of a terminal condition. In our empirical setting, the most serious sicknesses uncovered by the program involved long-term manageable health conditions such as severe diabetes, obesity and pain, and not terminal diseases. By focusing on employees who receive news about less serious diseases, we do not mean to imply that every worker identified as sick via the program will only feel positive emotions.

5.2 Empirical Limitations

Despite its strengths, our empirical setting has two important weaknesses that should be addressed in future work. First, the number of workers for which we have two years of health and productivity data is limited (in some regressions only 100), which makes precise estimation of productivity changes for different subsamples difficult. This problem is particularly acute when attempting to identify the specific health improvements (e.g., diabetes) that drive productivity gains. Consequently, the imprecision of our coefficients should not be interpreted as strong evidence of a null effect—we may simply not have enough statistical power to identify smaller effect sizes. Future work should seek larger organizations where larger samples will provide improved power and allow possible identification of smaller effects that support (or refute) our hypotheses.

The second weakness is the endogeneity of wellness program participation as well as the choice to engage in lifestyle improvements and outcomes such as increased job satisfaction. It could be that employees who agreed to participate were more likely to view the program in a positive light, and more likely to commit to lifestyle changes. Indeed, recent work has shown that individual worker differences such as time discounting or self-control can predict both health and other behavioral dimensions (Gubler and Pierce 2014, Israel et al. 2014). A true randomized field experiment is a promising approach for future work to address this
problem. We do note, however, that 85% of employees in the four participating plants chose to participate, as we include a fifth control plant, so we expect selection effects to be minor.

5.3 Theoretical Boundary Conditions

Although our empirical setting demonstrates how wellness programs can improve productivity, two important program design elements define boundary conditions for such improvements. First, program participation by employees cannot be compulsory or heavily coerced through social pressure or financial penalties, since such pressure might induce psychological reactance. Psychological reactance theory (Brehm 1966) argues that individuals strongly react to external influence that they perceive to restrict their autonomy. Programs such as wellness initiatives that threaten worker autonomy through social pressure, strong incentives, or prohibitions might motivate employees to assert their autonomy either through resisting the program or even through reduced productivity. Indeed, public health scholars argue that strong incentives and requirements in wellness programs can produce negative effects through psychological reactance (Dowd 2002), since employees view health and lifestyle choices as outside their work domain. The program in our empirical setting was both voluntary and only weakly incentivized.

Second, employees must trust that the firm will respect the privacy of employee health data and not use it for employment-related purposes. HIPAA regulations in the United States forbid firms from accessing employee health and wellness data that is collected through group health plans. However, data from employer-run wellness programs may be legally accessible. While firms cannot legally use these data for employment decisions, and must formally separate program administration from other human resource functions, employees may not trust the firm to observe this prohibition. Firms must not only observe these regulations, but also communicate and demonstrate this compliance for credibility with employees. Employees who mistrust the firm’s use of private health data might view the wellness program as violating a broader psychological contract that governs their overall relationship and influences their individual day-to-day actions (Rousseau 1990). This perceived abrogation by the employer of a part of this implicit contract could reduce overall job motivation, satisfaction, and retention among those who strongly value health privacy.
References

21

Medical Billing and Coding (2012) Available at: http://www.medicalbillingandcoding.org/blog/12-companies-with-seriously-impressive-corporate-wellness-programs/

NCHS (2012) NCHS Data Brief No. 82. Available at: http://www.cdc.gov/nchs/data/databriefs/db82.pdf

Figure 1: Framework of How Wellness Programs Can Improve Productivity

<table>
<thead>
<tr>
<th>Pre-Program Employee Health</th>
<th>Healthy</th>
<th>Don’t Improve</th>
<th>Improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Problems</td>
<td></td>
<td>H1: (job satisfaction) +</td>
<td>H1: (job satisfaction) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H2: (gratitude) +</td>
<td>H3: (overall well-being) +</td>
</tr>
</tbody>
</table>

Figure 2: Cumulative Impact of Wellness Programs on Productivity

Productivity Gain from Wellness Program

- Baseline level
- Hypothesis 1: Improve Lifestyle?
 - No
 - Yes: Overall well-being
- Hypothesis 2:
- Hypothesis 3:
- Hypothesis 4: Physical improvement
Figure 3: Visits by Wellness Program Administrator to LaundryCo

Data Year

2009 2010 2011 2012

Vendor Visit

Worker Performance Worker Performance Worker Performance Worker Performance

1st cohort pre 2nd cohort pre 1st cohort post 2nd cohort post

Figure 4: Abnormal Blood Results for Sick Who Improved

Note: Diamonds represent coefficient estimates for each specific blood abnormality category following the main specification outlined in the estimation section. Models are estimated using OLS with clustered standard errors at the individual level. “Sick” is defined as having an abnormal blood test in specific blood category. “Better” is defined as resolving all abnormal blood tests in a specific blood category. Coefficient estimates are plotted for sick individuals that get better (“Better” equal to 1).
Figure 5: Abnormal Blood Results for Sick Who Improved

Note: Diamonds represent coefficient estimates for each specific category following the main specification outlined in the estimation section. Models are estimated using OLS with clustered standard errors at the individual level. “Sick” is defined as having a nutrition score <50, hdl cholesterol <=39, not exercising, and reporting a stress signal. “Better” is defined as positive improvements on a given category. Coefficient estimates are plotted for sick individuals that improve (“Better” equal to 1).

Table 1: Descriptive Statistics at Worker/day Level

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Sd</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>efficiency</td>
<td>52299</td>
<td>125.83</td>
<td>31.60</td>
<td>24.67</td>
<td>264.10</td>
</tr>
<tr>
<td>post period</td>
<td>52299</td>
<td>0.47</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>month(continuous)</td>
<td>52299</td>
<td>17.64</td>
<td>10.05</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>year</td>
<td>52299</td>
<td>2009</td>
<td>0.87</td>
<td>2009</td>
<td>2012</td>
</tr>
<tr>
<td>participant</td>
<td>52299</td>
<td>0.52</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>sick (doctor measure)</td>
<td>52299</td>
<td>0.33</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>better (doctor measure)</td>
<td>52299</td>
<td>0.14</td>
<td>0.35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>better (doctor group measure)</td>
<td>52299</td>
<td>0.17</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>better exercise days</td>
<td>52299</td>
<td>0.21</td>
<td>0.41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>better hdl</td>
<td>52299</td>
<td>0.35</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>better nutrition score</td>
<td>52299</td>
<td>0.12</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>better stress signals</td>
<td>52299</td>
<td>0.13</td>
<td>0.33</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

N 52299
Table 2: Correlations for Primary Variables

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>post period</th>
<th>participant</th>
<th>sick</th>
<th>better</th>
<th>better (group)</th>
<th>better exercise</th>
<th>better hdl</th>
<th>better nutrition</th>
<th>better stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>efficiency</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>post period</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>participant</td>
<td>0.03</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sick</td>
<td>-0.13</td>
<td>0.04</td>
<td>0.67</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>better</td>
<td>0.00</td>
<td>0.02</td>
<td>0.39</td>
<td>0.20</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>better (group)</td>
<td>-0.03</td>
<td>0.03</td>
<td>0.43</td>
<td>0.29</td>
<td>0.91</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>better exercise</td>
<td>0.08</td>
<td>-0.03</td>
<td>0.50</td>
<td>0.28</td>
<td>0.34</td>
<td>0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>better hdl</td>
<td>0.03</td>
<td>0.03</td>
<td>0.71</td>
<td>0.52</td>
<td>0.19</td>
<td>0.23</td>
<td>0.40</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>better nutrition</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.36</td>
<td>0.00</td>
<td>0.30</td>
<td>0.32</td>
<td>0.11</td>
<td>0.38</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>better stress</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.37</td>
<td>0.16</td>
<td>0.33</td>
<td>0.28</td>
<td>0.16</td>
<td>0.12</td>
<td>0.24</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Table 3: Health Change Regression Results, Total Effects

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1) Efficiency</th>
<th>(2) Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>Health Assessment</td>
<td>Independent Doctors</td>
<td>Collective Doctor Scale</td>
</tr>
<tr>
<td>Post</td>
<td>-4.304 (3.675)</td>
<td>-4.381 (3.689)</td>
</tr>
<tr>
<td>Participant x Post (H1)</td>
<td>9.060*** (3.429)</td>
<td>8.601** (3.464)</td>
</tr>
<tr>
<td>Participant x Post x Sick (H2)</td>
<td>-1.707 (3.361)</td>
<td>-1.849 (3.774)</td>
</tr>
<tr>
<td>Participant x Post x Better (H3)</td>
<td>13.271** (6.335)</td>
<td>13.269** (6.599)</td>
</tr>
<tr>
<td>Participant x Post x Sick x Better (H4)</td>
<td>12.305** (5.875)</td>
<td>9.021* (4.679)</td>
</tr>
<tr>
<td>Plant time trends</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Fixed effects</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>R²</td>
<td>0.464</td>
<td>0.463</td>
</tr>
<tr>
<td># of employees</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>Observations</td>
<td>52299</td>
<td>52299</td>
</tr>
<tr>
<td>Sick cutoff</td>
<td>3 doctors</td>
<td>3 doctors</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses, clustered by individual. The dependent variable is daily worker efficiency. Column 1 defines “sick” individuals using each physician’s evaluation. All three physicians must specify an individual as “sick” for sick to take the value of 1. Results are robust to a cutoff of 2 physicians specifying sickness. “Better” uses the average of the physician’s evaluations on improvement (Q4 in the Physician Evaluation Questionnaire), and takes the value of 1 if the average indicates improvement (>3 on the Q4 5-point scale). For Column 2, “sick” is defined the same as column 1, but better uses the collective physician scoring system. Under this system, “Better” is defined as an improved score between the first and second time participating. * p<0.10 ** p<0.05 *** p<0.01
Appendix

A1. Physician Evaluation Questionnaire

Please answer the following questions for each line in the data. Please note that question 4 will only apply to instances where the employee (identified by the “employee id” variable) is a repeat participant (also specified by participation_id). The columns “Survey_q1, Survey_q1_response, Survey_q2, Survey_q3, and Survey_q4” have been created for answers to each of the questions.

1. Do you believe this employee likely has one or more medical conditions? If yes, list any such conditions. *Note: Just a best guess for the basic medical condition; doesn’t have to be definitive. Please put a “yes” or a “1” in Survey_q1 for each observation if they have one or more medical conditions.*

2. Considering each employee's medical condition(s) and state of general health as determined by laboratory and survey data, how seriously ill is the employee? (1=not very sick for the condition(s); 5=very sick for the condition(s)) *Note: Given the data, this is your professional opinion to how sick the patient is. This may differ slightly from the total score resulting from the scoring system depending on how you weight the profile as a whole.*

3. How much do you think each employee's general state of health would impact his/her ability to carry out an 8-hour job involving manual labor? (1=very little; 5=considerably) *Note: This question is focused on how employee health will impact short-term productivity. This is more specific than question 2, as question 2 more broadly focuses on general wellness (some of which may not immediately impact productivity).*

4. How much did the employee's health improve from the last set of tests? (1=worsened considerably, 2=worsened a little, 3=the same, 4=improved a little, 5=improved considerably) *Note: Again, given the data, this is your professional opinion. This may coincide or differ from the change in the total score from the scoring system, depending on how you weight the improvements in the profile as a whole.*
A2. Physician Parameters and Scoring System

Survey Questions:
- Question 4: +1 pts for each medical problem and taking medication. +0 pts if not taking medication. If a person is not taking a medication for his/her medical problems, we think it's safe to assume the medical problem is not affecting their productivity or ability to complete routine daily tasks.
- Question 5: +1 pts for each symptom.
- Question 6: +1 pts for moderate pain, +2 pts for severe pain, +3 pts for very severe pain. +0 pts for none, very mild or mild pain.
- Question 7: +1 pts for a little bit of limitation, +2 pts for some limitation, +3 pts for quite a bit of limitation, +4 pts for could not do daily work, +0 pts for none at all.
- Question 8: +1 pts for quite a bit of limitation, +2 pts for extremely limited, +0 pts for none at all, slightly or moderately limited.
- Question 9: +1 pts for quite a bit of limitation, +2 pts for extremely limited, +0 pts for none at all, slightly or moderately limited.
- Question 10: +2 pts for each activity limited a lot, +1 pts for each activity limited a little.
- Question 11: +1 pts for patients who exercise <5 days per week.
- Question 20: +1 for 15-20 drinks/wk, +2 for 21 or more drinks/wk.
- Question 22: +1 pts for quit smoking <2 yrs, +1 cigar/pipe, +1 smoke <10 cigs/day, +2 smoke >10 cigs/day.
- Question 23: +1 pts for chewing tobacco.

Labs:
- A1c: +1 pts for A1c of 6.5-7.0, +2 pts for A1c>7.0.
- Albumin: +1 pts for albumin <3.6.
- TSH: +1 pts for TSH>4.5 or <.45.
- Hgb: +1 pt for hgb <12.5, +2 pts for hgb <10, +3 pts for Hgb<8.
- CRP: +1 pt for CRP>3.
- Total Cholesterol: +1 pts for t.chol>250, +2 for t.chol>500.
- HDL: +1 pts for HDL<35.
- LDL: +1 pts for LDL>190.
- BMI>40: +2 pts, BMI>30: +1 pts, BMI<30: 0 pts.
- BP>140/90: +1 pts.

Lowest Possible Score: 0 pts
Highest Possible Score: 50 pts
Figure A3: Lifestyle Changes and Efficiency by “Sick” and “Better”

Note: Effect of lifestyle improvements shown for each possible combination of “sick” and “better” groupings. Lifestyle improvement indicates health improvement on either stress, HDL cholesterol, or exercise. Coefficient estimates represent efficiency regressed on the interaction between each lifestyle improvement, sick, and better.